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Abstract
We approach the helimagnetic structure of the itinerant-electron magnet YMn2,
in which the Mn sublattice forms a geometrically frustrated corner-sharing
tetrahedral lattice, by means of both low-energy neutron diffraction and precise
nuclear magnetic resonance (NMR) experiments, by modifying the magnetic
state by Tb substitution (the introduction of lattice inhomogeneity), and by
considering the origin of the tetragonal lattice distortion detected below TN.
The spin reorientation induced by the Tb substitution from the helical state
with the propagation vector �Q = [τ01] (τ = 0.018) and with spins lying in
the {100} plane to that with �Q = [ττ1] (τ = 0.015) and {111}-plane rotation
is interpreted as symmetry lowering from a coherent proper screw state with a
high magnetic symmetry to an asymmetric but locally preferable configuration
with the easy-plane anisotropy perpendicular to the local symmetry axis.
Treating the magnetic state as a weakly coupled assembly of one-dimensional
antiferromagnetic spin chains, which is realized as a result of the partial
release of the frustration, and taking into consideration the lattice symmetry,
the possibility of double-axial helical structures arises and is discussed. In
this study, all the inconsistency among previously reported NMR spectra is
removed, and the strong frequency dependence of the spin-echo decay time
T2 found unexpectedly is explained in terms of a phenomenological model
taking into consideration the dynamic motion of electron spins in the locally
anisotropic magnetic system.

1. Introduction

Magnetic structure is usually determined by neutron diffraction experiments. In general,
however, magnetic structures thus determined include some ambiguity, particularly as regards
the directions of spins in highly symmetric lattices [1]. To distinguish between these apparently
3 Author to whom any correspondence should be addressed.
4 Present address: Advantest Laboratories Limited, 48-2 Matsubara, Kamiayashi, Aoba-ku, Sendai 989-3124, Japan.
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degenerate structures, nuclear magnetic resonance (NMR) is often useful [2] because NMR,
as a local probe, gives information in real space, which is complementary to that in reciprocal
space obtained by diffraction methods. In the present study, we use both neutron diffraction
and NMR in discussing the magnetic structure in a highly symmetric lattice.

The cubic Laves phase compound YMn2 exhibits helical magnetic ordering with an
extremely long period below TN � 100 K [3–5]. However, it seems that the precise magnetic
structure, including the spin direction and the origin of the long-period modulation, have not
been fully understood. It relates to the geometrical frustration of antiferromagnetic interaction
on the corner-sharing tetrahedral lattice (see figure 1(a)) inherent to the cubic Laves phase
structure, with lattice parameter a � 7.7 Å. It is well known that the nearest-neighbour
antiferromagnetic interaction frustrates in a regular tetrahedron and that if the four spins satisfy

�s1 + �s2 + �s3 + �s4 = 0 (1)

the total energy is always the lowest. The atomic positions �ri of the spins �si are defined in
section 4.1 and indicated in figure 1(a). Therefore, in the corner-sharing tetrahedral lattice, the
magnetic ground state has a macroscopic number of degeneracies.

Figure 1. (a) The magnetic structure of YMn2 (NSK model) proposed by Nakamura, Shiga and
Kawano [6] (•: up spins; ◦: down spins). (b) Neighbouring c-planes, which are shown to
emphasize the [110] and [11̄0] antiferromagnetic spin chains.

Extensive investigation of YMn2 started after the antiferromagnetic ordering was found
by the first neutron diffraction measurement [6]. The transition is of first order, accompanied
by a huge discontinuous volume change with �V/V � 5% and a thermal hysteresis. On the
basis of a neutron diffraction experiment using a neutron beam with a wavelength of λ = 1.0 Å,
Nakamura, Shiga and Kawano [6] proposed an antiferromagnetic structure with �Q = [001]
(with an ordered moment of 2.7 µB/Mn) as shown in figure 1(a) (this will be denoted as the
NSK model), where �Q is the propagation vector of the face-centred cubic (fcc) sublattice (see
section 4.1). This is known to be one of the most stable antiferromagnetic structures in this
lattice [7]. In the NSK model, the magnitudes of the moments are the same, i.e.

s1 = s2 = s3 = s4. (2)

This restriction was always applied in the literature cited hereafter and is also assumed in the
present study. Subsequently, a small tetragonal distortion below TN (1 − c/a � 0.5%) was
confirmed by high-resolution experiments [4].
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Before discussing the spin direction, let us examine in more detail the black-and-white
lattice shown in figure 1; we are considering only the Ising-type spin degree of freedom. Three
one-dimensional 〈110〉 spin chains cross at each spin site due to the geometrical characteristics.
Let us inspect each (001) plane; one such is extracted in figure 1(b) to allow us to exaggerate
its characteristics. In each (001) plane there are one-dimensional [110] (or [11̄0]) chains,
in which nearest-neighbour spins are coupled as + − + −. That is, the nearest-neighbour
antiferromagnetic coupling is operative in the c-planes. The chains belonging to neighbouring
(001) planes are perpendicular to each other. The [110] and [11̄0] chains are equivalent not only
crystallographically but also magnetically. On the other hand, if we follow the spin arrangement
in the other chains, say along the [011] direction, the spins are coupled as + + − −. That is,
the NSK structure is tetragonal as regards magnetic symmetry. In addition, for two nearest-
neighbour spins belonging to neighbouring chains in different c-planes, one is + and the other
is −, implying that no magnetic interaction acts between the chains due to cancellation. In spite
of the crystallographic equivalence of the 〈110〉 chains, the magnetic interaction between the
(001) planes is ‘decoupled’ to compensate for the tight antiferromagnetic coupling in the [110]
and [11̄0] chains. In other words, the NSK structure is characterized as weakly coupled one-
dimensional antiferromagnetic chains. This reduced dimensionality of the antiferromagnetic
interaction is one of the consequences of the frustration.

Although, in figure 1(a), the [001] direction is specific with respect to the magnetic
coupling, the [100], [010] and [001] directions should be degenerate under ideal cubic
symmetry and, therefore, the dynamic state which is the linear combination of the three states
would be the ground state. On the other hand, if the lattice symmetry is lowered, particularly to
tetragonal, for any reason, the static NSK configuration is expected to be realized. Therefore
the observed small tetragonal distortion seems to be consistent with the NSK model; the
tetragonal c-axis coincides with the magnetic [001] axis [4]. The distortion with c < a

is not inconsistent with the above-mentioned reduced magnetic dimensionality because, for
manganese Laves phase compounds, generally, the larger the interatomic distance is, the more
stable the magnetic moment is, and hence the stronger the antiferromagnetic interaction is.
We may conclude that the magnetic ordering of YMn2 is realized when the energy gain due
to the partial release of the frustration overcomes the loss of elastic energy associated with
the symmetry lowering in the crystal. In addition, this means that there is strong magneto-
crystalline (magnetovolume) coupling in the YMn2 system. However, this argument is valid
only when considering the Ising-type spin degree of freedom. If we take into account the spin
orientation and/or the helical modulation, the situation is more complicated and controversial.

When the NSK model was proposed, the spin axis was argued to be along the [111]
direction by analysing intensities of magnetic Bragg peaks. At that time, a rhombohedral
distortion was accordingly suggested [9], but was deemed to be refuted subsequently by
high-resolution experiments [4], after some debate [9–11]. After the initial work, Ballou
et al [3] performed again neutron diffraction experiments using a long-wavelength neutron
beam (λ = 2.483 Å) and found splittings of the magnetic Bragg peaks. They proposed a helical
modulation of the antiferromagnetic structure (2.7 µB/Mn) with an extremely long period of
about 400 Å. They determined the propagation vector �Q = [τ01] with τ = 0.02. Within this
model, the best fit to neutron diffraction intensities is obtained with Mn spins rotating in the
a-plane (the (100) plane). Note that Ballou et al [8] also suggested the possibility of a multi-
axial structure from consideration of the magnetic anisotropy in YMn2. Further, Cywinski
et al [4] performed high-resolution powder neutron diffraction experiments using a pulsed
neutron instrument and determined the modulation vector �Q = [ττ ′1] with τ = 0.018 and
τ ′ = 0.003, i.e. the Mn spins rotating in the [100] direction with a period of 430 Å and in the
[010] direction with a period of as much as 2500 Å. The best fit to the data was again obtained
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with the Mn spins (2.8 µB/Mn) lying in the (100) plane. It seems that, with the Mn spins lying
in the a-plane (the (100) plane) and rotating mainly along the a-axis (the [100] direction), it is
somewhat difficult to explain the tetragonal distortion in the c-direction (the [001] direction)
because we are not able to explain why the a-plane is selected as the spin-rotation plane from
the crystallographically equivalent a- and b-planes. Taking this symmetry problem seriously,
Vokhnyanin et al [5] proposed a different model with �Q =[1+τ 0 1+τ ] (τ = 0.0077) based on
their neutron diffraction result (λ = 2.42 Å). In their model, Mn spins (2.6 µB/Mn) lie in the
(001) plane and some nearest-neighbour spins are mutually perpendicular in the plane. The
magnetic structure is modulated along the [101] direction with a period of about 700 Å. Thus,
the spin direction of YMn2 is still controversial. This is related to the facts that the crystal
symmetry of YMn2 is high and that the neutron diffraction method is not always infallible in
determining the spin direction in a highly symmetric lattice.

Since the straightforward approach is thus limited, we access this problem from different
viewpoints. We make the following points.

(i) By applying perturbation, we speculate on the original state by inspecting the variation.

(ii) To supplement the reciprocal-space information obtained by diffraction methods, we
obtain real-space information by performing experiments with local probes.

(iii) We apply physically reasonable restrictions to select models of the spin structure.

As regards (i), we recently performed high-resolution neutron diffraction measurements
of Y0.97Tb0.03Mn2 (which will be denoted as Y(Tb)Mn2) using a low-energy neutron source
with λ = 4.750 Å and succeeded in detecting an appreciable change in the neutron diffraction
pattern [16]. We selected Tb as the dopant because Tb has an atomic volume close to that of Y,
and therefore does not affect the stability of the Mn moments. The Tb moments are so dilute
that they behave paramagnetically down to about 1 K and do not interact appreciably with the
Mn sublattice. The neutron diffraction profile of Y(Tb)Mn2 was interpreted in terms of a helix
with �Q = [ττ1] where τ = 0.015. This indicates that the direction of the propagation vector
changes from [100] to [110] on substituting only 3% Tb for Y. On the other hand, the crystal
distortion was found to be tetragonal as in YMn2.

As for (ii), further useful information on the magnetic structure is given by the NMR
spectrum measured for the ordered state. Usually, the signal intensity at a certain frequency is
considered to measure the population of the atoms which ‘feel’ the corresponding internal field.
At an early stage, Yoshimura and Nakamura [12] reported an NMR spectrum with two peaks
with an intensity ratio of 1:3, which was interpreted assuming the NSK model and anisotropy
in the internal field. The spin direction was argued to be parallel to the [111] axis on the basis of
the intensity ratio. However, this spectrum was revealed to be inconsistent with homogeneous
spin rotation in the (100) plane, since such a helix leads to a doublet spectrum with the peaks
having equal intensity (see section 4.2). After the discovery of the long-period modulation,
Bertier et al [13] reported a different NMR spectrum, which has a single peak with a long
tail on the high-frequency side. This spectrum was explained assuming an inhomogeneous
modulation of the helix. Furthermore, an exactly intermediate spectrum was also reported
by other authors [14, 15]. Thus, there have been appreciable differences in the experimental
results, although earlier workers have treated them as the principal information for determining
the spin direction. This situation has led to confusion in discussing the magnetic structure.
Therefore it seems to be necessary to measure the NMR spectrum of YMn2 in more detail.

As regards (iii), we believe that the magnetic ordering of YMn2 is realized as a result of the
partial release of the frustration as mentioned above. In addition, we respect the correspondence
between magnetic and crystallographic symmetry in the present study.
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The primary purpose of this study is to clarify the origin of the discrepancies among
the previously reported NMR spectra of YMn2 and to give balanced information to support
discussion of the magnetic structure. The strong frequency dependence of the spin-echo
decay time T2 found unexpectedly in this study is explained by a simple phenomenological
model taking into consideration the dynamic motion of electron spins. The final aim is to
discuss the more normal magnetic structure of YMn2. Here we treat the ordered state of
YMn2 as an assembly of weakly coupled one-dimensional antiferromagnetic spin chains.
From comprehensive analyses of both NMR and neutron diffraction data, we argue for the
possibility of a multi-axial helimagnetic structures.

A part of this study has already been published in conference proceedings [17, 18].

2. Experimental procedures

Polycrystalline samples of YMn2 and Y0.97Tb0.03Mn2 were prepared from 99.9% pure Y and
Tb and 99.95% pure Mn in nominal concentrations by arc melting in an argon atmosphere.
The ingots were annealed for a week in evacuated quartz tubes at 800 ◦C. No foreign
phase other than of C15 type was detected for either of the samples by means of x-ray
and neutron powder diffraction. To characterize the samples, the temperature dependence
of the magnetic susceptibility was measured by a SQUID magnetometer (Quantum Design
MPMS-2) under a field of 1 T. For nuclear resonance measurements the samples were
crushed into fine powder with the particle diameter less than 50 µm to avoid the skin-depth
effect. Spin-echo measurements were made with a home-made phase-coherent-type pulsed
spectrometer. The spin–lattice relaxation time T1 was measured by the saturation–recovery
method with the appropriate number of saturation comb pulses. The gyromagnetic ratio for
55Mn, γ /2π = 10.50 MHz T−1, was used for the analyses. Since the Mn site (16d site)
has trigonal symmetry, the 55Mn nucleus with the nuclear spin I = 5

2 ‘feels’ an electric field
gradient with the asymmetry parameter η = 0. Neutron diffraction measurements were carried
out by using the High Resolution Powder Diffractometer (HRPD) and the Low-energy Triple
Axis Spectrometer (LTAS) installed at the reactor JRR-3M in Japan Atomic Energy Research
Institute (JAERI). The (311) plane of a Ge monocrystal was used as the monochromator for
HRPD. The collimation was 6′–20′–6′. When using LTAS, three-axis measurements were
performed to achieve the required resolution. The (002) plane of pyrolytic graphite was used
for both monochromator and analyser. The collimation was 28′–40′–20′–40′. The wavelengths
of the incident neutrons are 1.823 and 4.750 Å for HRPD and LTAS, respectively.

3. Experimental results

3.1. Magnetic susceptibility

Temperature dependences of the magnetic susceptibility measured for YMn2 and Y(Tb)Mn2

are shown in figure 2. The inverse susceptibility is also shown for Y(Tb)Mn2. Each of
the samples exhibits a magnetic transition at around 100 K accompanied by a large thermal
hysteresis. The result for YMn2 is practically the same as those reported in the literature
[19] although the low-temperature upturn is considerably suppressed for the present sample,
indicating that the large upturn observed for previous samples is extrinsic. The susceptibility
of Y(Tb)Mn2 is two orders larger in magnitude than that of YMn2 and shows a Curie–Weiss-
like temperature dependence down to 5 K, which is ascribed to paramagnetic Tb moments;
Tb moments are dilute enough not to interact with each other. The substitution of a small
amount of Tb does not affect the transition temperature, indicating that the magnetism of the



480 H Nakamura et al

Figure 2. The temperature dependence of the magnetic susceptibility (•) for YMn2 (a) and
Y0.97Tb0.03Mn2 (b). The inverse susceptibility (◦) is also shown for Y(Tb)Mn2.

Mn sublattice is scarcely modified on a macroscopic scale. In contrast to the case for YMn2,
however, the susceptibility increases slightly below TN, suggesting that the effective magnetic
interaction between Tb moments is modified by the magnetic ordering of the Mn sublattice;
the magnitude of the Weiss temperature decreases below TN.

3.2. Paramagnetic properties: the Knight shift

To obtain information on the hyperfine coupling, particularly its anisotropy, we measured the
temperature dependence of the paramagnetic 55Mn NMR spectrum for YMn2. An example
of a field-swept spectrum measured at 100 K is shown in figure 3, which shows well-resolved
quadrupolar splittings for I = 5

2 with η = 0. The nuclear quadrupole frequency νQ (the
magnitude of the electric field gradient), estimated from the separation of the first-order
satellites, is shown in figure 4 as a function of temperature. With increasing temperature, νQ

decreases monotonically; this is mainly ascribable to the thermal expansion. An enlargement
of the centre line (transitions of m = + 1

2 ↔ − 1
2 ), shown in the inset of figure 3, exhibits

an asymmetric shape due mainly to the second-order quadrupolar effect. However, assuming
isotropy of the Knight shift, we failed to explain the shape—in particular, the separation
of two peaks—indicating that the anisotropy should be taken into account. To estimate the
Knight-shift parameters K‖ and K⊥, which are the components parallel and perpendicular to
the quantization axis, we compared the experimental results with computer-generated powder
patterns. Here we assumed coincidence of the principal axis of the Knight-shift tensor with
the local symmetry axis 〈111〉 and used the values of νQ estimated above. The broken and
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Figure 3. The paramagnetic 55Mn NMR spectrum of YMn2 measured at 72.3 MHz and 100 K.
The inset shows an enlargement of the centre line (– – –: the calculated pattern with appropriate
Knight-shift and quadrupolar parameters; ——: its Gaussian-convoluted pattern).

Figure 4. The temperature dependence of the pure quadrupole frequency νQ for YMn2, which was
estimated from the splitting of the first-order satellites in the paramagnetic spectrum (measured in
the temperature-decreasing process).

solid curves in the inset are the results calculated without and with consideration of the
Gaussian-type inhomogeneous linewidth, respectively. The temperature dependences of K‖
and K⊥ thus obtained for the paramagnetic phase are shown in figure 5(a). It is notable that
K‖ and K⊥ are proportional to the bulk susceptibility (figure 2(a)), with negative hyperfine
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Figure 5. (a) Temperature dependences of the Knight-shift components parallel (•) and
perpendicular (◦) to the symmetry axis for YMn2. The data were measured for the paramagnetic
phase in the temperature-decreasing process. (b) A plot of the isotropic Knight shift versus
the susceptibility for YMn2. The straight line gives the isotropic hyperfine coupling constant
Aiso = −22.2 Tµ−1

B . The inset shows the temperature dependence of the anisotropic Knight shift.

coupling. In figure 5(b), the isotropic component Kiso ≡ 1
3 (K‖ + 2K⊥) is plotted against the

bulk susceptibility (figure 2(a)) with the temperature being an implicit parameter. The K–χ
plot is linear, giving the isotropic hyperfine coupling constant Aiso = −22.2 Tµ−1

B , which
agrees well with that reported previously by Zheng et al [21]. The temperature dependence
of the anisotropic Knight shift defined as Kaniso ≡ 2

3 (K‖ − K⊥) is shown in the inset of
figure 5(b). The anisotropy increases as the temperature approaches the transition point from
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higher temperatures. This may be related to the origin of the magnetic transition and/or the
symmetry lowering at TN. A similar temperature dependence of the anisotropic Knight shift
has been observed for another cubic Laves phase compound, UMn2, which shows a structural
transition at around 240 K [20]. The appreciable magnitude of the anisotropy observed for
YMn2 suggests a large orbital contribution to the Knight shift. Assuming isotropy of the
hyperfine coupling, the results in figure 5(a) imply that the temperature dependence of χ⊥
is larger by about 40% than that of χ‖, where χ⊥ and χ‖ are the components of the local
susceptibility perpendicular and parallel to the symmetry axis, respectively.

3.3. NMR in the magnetically ordered state

The discrepancies among the previous NMR spectra of YMn2 may originate from (i) the
sample dependence of the NMR spectra (i.e. the sample dependence of the magnetic structure),
(ii) insufficiently accurate analyses of the NMR results or (iii) an inappropriate model for the
magnetic structure. Here, we will give new comprehensive NMR results for YMn2 and explain
the reason for the previous disagreement.

Figure 6(a) shows frequency dependences of the spin-echo intensity of YMn2 at 4.2 K.
The intensity corrections inherent to the apparatus have already been made. These spectra
were measured at different values of τ , 10 and 50 µs, where τ is the time separation between
two pulses for the spin-echo experiment. Surprisingly, we obtained markedly different spectral
shapes. The profile measured at τ = 10 µs has two maxima at around 121 and 134 MHz, which
is similar to the result reported by Yoshimura and Nakamura [12] (measured at τ = 15 µs),
while the data at τ = 50 µs exhibit a single peak with a long tail to the high-frequency side,

Figure 6. Frequency dependences of the 55Mn spin-echo intensity for YMn2 at 4.2 K (a) and
Y0.97Tb0.03Mn2 at 1.4 K (b) with different pulse separations τ : 10 µs (•) and 50 µs (◦).
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which corresponds to the result obtained by Bertier et al [13] (τ was not given in [13]). These
results indicate clearly that the frequency-dependent spin-echo decay time T2 is the principal
origin of the differences among the previous results.

Hence, we measured the spin-echo decay at each frequency. A typical example of the
decay curve measured at a frequency of 118 MHz is shown in figure 7 on a semilogarithmic
plot. The decay curve I (τ ) is not of single-exponential type but is roughly described by a
stretched exponential function:

I (τ ) = I (0) exp

[
−

(
τ

T2

)β
]

(3)

where T2 is the tentatively defined transverse relaxation time and β a constant in the range
0.5 � β � 1. The experimental decay can roughly be reproduced with β = 0.5, as shown
by the solid curves in figure 7, where the intensity is also plotted against

√
τ . This relation is

generally observed when the relaxation times are distributed statistically [22].

Figure 7. The spin-echo decay curve of YMn2 measured at 4.2 K and 118 MHz, plotted against τ
(•) and

√
τ (◦). The solid curve indicates the best fit with (3).

Although the shape of the decay curve is slightly dependent on the frequency, we estimated
crude values of 1/T2 using equation (3) with fixed β = 0.5. The values obtained are plotted
in figure 8(a) as a function of frequency. The relaxation rate 1/T2 shows an unexpectedly
large frequency dependence and exhibits a maximum at around the frequency of the high-
frequency peak in the spectrum (figure 6(a)). The origin of the distinct frequency dependence
will be discussed in section 4.5. The frequency dependence of the transverse relaxation has
already been suggested by Bertier et al [13] although the effects on the spectral shape were not
explicitly discussed. It is notable that the absolute value of 1/T2 depends also on the rf power,
i.e. the magnitude of the oscillating field H1. This means that the spectral shape measured
at a finite τ depends also on the rf power. In our measurements, we used a rather large H1
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Figure 8. Frequency dependences of the spin-echo decay rate 1/T2 (defined in (3)) for YMn2 at
4.2 K (a) and for Y0.97Tb0.03Mn2 at 1.4 K (b).

(∼0.01 T). Thus the disagreement among the previous results is ascribed to the difference in
experimental conditions, particularly as regards τ and H1, not to sample dependence.

When we discuss the number of atoms which ‘feel’ a certain internal field, we have to deal
properly with the observed NMR intensity. It is apparent from the present observation that
the frequency dependence of T2, which was assumed negligible in previous work, is in fact
very significant for YMn2. We estimated T2-corrected intensities I (0) by extrapolating the
experimental spin-echo decay to τ = 0 using equation (3). The corrected spectrum is shown
in figure 9(a). In addition to the T2-correction, the frequency dependence of the intensity
enhancement by the rf oscillating field is, in general, important, particularly for anisotropic
magnets. For YMn2, a slight frequency dependence of the enhancement factor seems to exist,
which can be monitored using experimental pulse widths to find the best resonance, but is
negligible under the present experimental conditions compared with the distinct frequency
dependence of T2. As seen in figure 9(a), the second peak at high frequency is enlarged by the
T2-correction, giving two peaks with almost equal intensity.

It is curious that 1/T2 shows such a strong frequency dependence. Generally, the spin-
echo decay rate (homogeneous linewidth), 1/T2, is dominated by the spin–lattice and spin–spin
relaxation mechanisms as follows:

1

T2
= α

T1
+

1

T ′
2

(4)

where T ′
2 is the relaxation time determined by the pure spin–spin relaxation, and α is a constant

depending on the quantum number of the transitions and also on the anisotropy in the local field
fluctuation. Here, we call the first and second terms theT1-process andT2-process, respectively.
To determine the origin of the frequency dependence, we measured 1/T1. An example of the
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Figure 9. T2-corrected spectra of YMn2 (a) and Y0.97Tb0.03Mn2 (b). Curves indicate the results
calculated assuming spin rotation in the {100} and {111} planes for (a) and (b), respectively. The
Gaussian function has been convoluted to take into account the inhomogeneous width. In (b) a
1:1 intensity ratio was assumed for the fixed-θ (θ = 90◦) and distributed-θ components (see the
broken curves and the text).

recovery of the nuclear magnetization, measured at 120 MHz, is shown in figure 10. The
recovery curve is not of single-exponential type but is complicated. The non-exponential
behaviour is ascribed to the distribution of T1 and/or the quadrupolar interaction. When the
quadrupolar interaction is present, the recovery function of the I = 5

2 nuclear magnetization is
generally given by the sum of three exponential functions [23]. However, a tentative fitting with
the equation for I = 5

2 and η = 0 failed to reproduce the experimental recovery. Therefore, to
take into account the distribution of T1 similarly to that of T2, we fitted the data with a tentative
equation:

I (t) = I (∞)

{
1 −

3∑
i=1

ci exp

[
−ai

(
τ

T1

)β
]}

(5)

where a1 = 1, a2 = 6 and a3 = 15 for I = 5
2 [23]. The weight factors ci are in principle

established if the initial condition for the nuclear spin system is known, but were treated as
free parameters in the present analysis. Similarly to the case for T2, an analysis with fixed
β = 0.5 reproduces the experimental recovery well, as shown by the solid curve in figure 10.
The frequency dependence of 1/T1 thus obtained is shown in figure 11. In contrast to the
distinct frequency dependence of 1/T2, only a slight decrease with increasing frequency is
shown by 1/T1. This result indicates that the frequency dependence of 1/T2 is dominated not
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Figure 10. The recovery curve of the nuclear magnetization for YMn2 measured at 4.2 K, 120 MHz
and τ = 15 µs. The solid curve is the best fit with (5).

Figure 11. The frequency dependence of the nuclear spin–lattice relaxation rate 1/T1 (defined in
equation (5)) for YMn2 measured at 4.2 K and τ = 15 µs.

by the T1-process but by the T2-process. We also measured the temperature dependence of
1/T2 in the ordered state. Below 20 K, the temperature dependence is very weak or negligible,
indicating that the relaxation mechanism of 1/T2 is not based on critical spin fluctuations in
the vicinity of the transition point.

We performed similar measurements for Y(Tb)Mn2. Figure 6(b) shows the spectrum
measured at τ = 10 µs. Since the spin-echo decay is much faster than that of YMn2, we
made measurements at a lower temperature, 1.4 K, to obtain an enhanced signal intensity. We
obtained a spectrum appreciably different from that of YMn2. The second peak observed for
YMn2 disappears and, instead, a new peak appears at a higher frequency around 144 MHz.
The spin-echo decay is again roughly described by equation (3) with β = 0.5. The frequency
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dependence of 1/T2 is shown in figure 8(b); it is quite similar to that for YMn2, in contrast to the
marked difference in the lineshape. With the same procedures applied to YMn2, we estimated
the T2-corrected spectrum, which is shown in figure 9(b). Bertier et al [13] made measurements
on a sample with a different Tb concentration, Y0.9Tb0.1Mn2, and observed only a single
peak. They interpreted this as due to the disappearance of the helical modulation associated
with the Tb substitution. Our measurements of the high-resolution neutron diffraction for
Y0.92Tb0.08Mn2 [34] indicate that its profile is almost the same as that of Y0.97Tb0.03Mn2,
i.e. there is still helical modulation along the [110] direction (see section 3.4). Therefore, for
Y0.9Tb0.1Mn2, the high-frequency peak might be invisible due to T2 being short.

3.4. Neutron diffraction

We summarize and compare the principal results of neutron diffraction experiments for pure
YMn2 and Y(Tb)Mn2. The results for Y(Tb)Mn2 have already been published in [16]. Their
results for YMn2 are in good agreement with those in the literature [3–5]. Figure 12 shows
magnetic diffraction patterns measured by HRPD, which are differences between results
obtained at 10 K and room temperature. The peak positions are common to YMn2 and
Y(Tb)Mn2, indicating that the fundamental magnetic structures are the same. All of the
peaks are assigned to Miller indices expected for the fcc type-I structure with �Q = [001].
On the other hand, the fine structures of the magnetic peaks are qualitatively different, as
shown in figure 13, which shows only the (110) magnetic peaks measured by LTAS. As clearly
seen, the (110) peak splits into a doublet and a triplet for YMn2 and Y(Tb)Mn2, respectively.
These results indicate the modulation of the antiferromagnetic arrangement. Higher-order
satellites are not observed, which rules out antiphase structures. According to [3], the doublet

Figure 12. Magnetic diffraction patterns for YMn2 (a) and Y0.97Tb0.03Mn2 (b) at 10 K, which
are differences between the intensities at 10 K and room temperature measured by HRPD
(λ = 1.823 Å).
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Figure 13. The magnetic (110) peaks for YMn2 (a) and Y0.97Tb0.03Mn2 (b) measured at 10 K by
LTAS (λ = 4.750 Å).

corresponds to the helical modulation with �Q = [τ01]. With the present result at 10 K, τ
is estimated to be 0.018. On the other hand, for Y(Tb)Mn2, the triplet splitting and also the
doublet splitting of the (201) peak (see [16]) indicate �Q = [ττ1] with τ = 0.015.

Figure 14 shows (222) and (400) nuclear Bragg peaks measured by HRPD at 10 K. The
features are common to YMn2 and Y(Tb)Mn2; the (400) peaks splits into two peaks with the
intensity ratio 2:1 while the (222) peak remains a single peak, indicating tetragonal lattice
distortion below TN. The distortion 1 − c/a is estimated to be 0.516 and 0.534% for YMn2

and Y(Tb)Mn2, respectively.

4. Discussion

4.1. Description of helimagnetic structures

YMn2 forms the cubic C15-type crystal structure with the space group Fd3m, in which Mn
atoms are located at the 16d site. Its site symmetry is trigonal (3̄m). The positions �r of the
16d site in the unit cell are given by

�r = ( 5
8

5
8

5
8 ),+�r1,+�r2,+�r3,+�r4 (6)

with the fcc translation

(000)+, (0 1
2

1
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4

1
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4 0 1
4 ) �r4 = ( 1

4
1
4 0). (7)

In other words, the 16d site is divided to four fcc Bravais sublattices.
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Figure 14. The nuclear peaks, (222) and (400), for YMn2 (a) and Y0.97Tb0.03Mn2 (b) measured
at 10 K by HRPD (λ = 1.823 Å).

For simplicity, we treat separately the spin configuration for one of the fcc sublattices and
the mutual relations among the four sublattices. The magnetic moment at the position �r in a
helimagnetic fcc sublattice is described by

�m(�r) = m
[
�u cos( �Q · �r) + �v sin( �Q · �r)

]
(8)

where m gives the magnitude of the moment, �u and �v are mutually orthogonal unit vectors.
The phase shift is omitted for simplicity. The position �r and the propagation vector �Q are
taken in units of the unit lattice vectors and the unit reciprocal-lattice vectors, respectively;
�r = x�a + y �b + z�c = (xyz) and �Q = 2π(h�a∗ + k�b∗ + l�c∗) = 2π(hkl) ≡ [hkl]. The observed
magnetic reflections (110), (201), (112), (310), (203), (312) etc (see figure 12) are included
in those expected for �Q = [001]. As mentioned in section 3.4, the neutron diffraction results
indicate �Q = [τ01] and [ττ1] for YMn2 and Y(Tb)Mn2, respectively, where τ corresponds
to the inverse of the period in units of the lattice parameter a. The much longer modulation
along the [010] direction suggested by Cywinski et al [4] will be neglected for simplicity in
the following discussion.

It may be convenient to define another propagation vector �q to describe the mutual spin
directions among the four sublattices. Assuming that all four fcc sublattices have the same
helical axis, i.e. the same �u and �v, the fundamental spin configuration in a unit tetrahedron is
described by

�si (≡ �m(�ri)) = �m0 exp(−i�q · �ri) (i = 1, 2, 3, 4) (9)

where �m0 gives the magnitude and direction of the moment. In the neutron diffraction patterns,
some of the peaks expected for the fcc type-I structure were not observed: (001), (003)/(221),
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(401)/(223), (005)/(403) etc. With the restriction (1) and �Q = [001], this condition is fulfilled
in the case of �q = [200].

On the introduction of inhomogeneity, the helical axis is changed from [100] to [110]. Let
us consider this transition in more detail. If we introduce helical modulation along the [100]
direction (the a-axis), the phase of the modulation ψ at the position (x, y) obeys ψ ∝ x (or
ψ ∝ y). This means that the phase varies (the spin direction rotates) in both the [110] and
[11̄0] chains. When the modulation is along the [110] direction, ψ ∝ x + y. This implies that
all spins in a [11̄0] chain have a constant ψ , i.e. the spins rotate only in the [110] chains and
are locked in collinear arrangements in the [11̄0] chains. This means that the [110] and [11̄0]
chains are no longer equivalent. Therefore, the switching of the modulation direction from
[100] to [110] induced by the Tb substitution is a symmetry lowering (phase transition) from
the isotropic helical modulation to an asymmetric one. In fact, this transition is accompanied
by switching of the spin-rotation plane, as seen in the next section.

4.2. Helimagnetism observed by means of NMR: analysis assuming single-axial states

We discuss the directions of the moments, i.e. the spin-rotation planes in the helimagnetic states,
mainly on the basis of the NMR results. The Mn site (the 16d site) has an axial symmetry
along one of the 〈111〉 axes. Note that there are four kinds of local symmetry axes as shown
in figure 15(a). It was confirmed by a lattice point charge calculation that the directions of the
local symmetry axes are scarcely modified by the small lattice distortion below TN. Therefore,
the tetragonal distortion below TN can be neglected in the NMR analysis. When the hyperfine
field is anisotropic, the resonance frequency ν = γHloc is written in a first approximation as

ν(θ) = ν0 + 1
2ν1(3 cos2 θ − 1) (10)

where ν0 and ν1 are parameters corresponding to the angle-independent and angle-dependent
components of the hyperfine field, and θ is the angle between the magnetic moment and the local
symmetry axis. In this model, the distribution of θ causes a broadening of the NMR spectrum.
For simplicity, we neglect the nuclear quadrupole interaction, although a small quadrupole
splitting (νQ � 2.6 MHz) was observed in the paramagnetic state. We treat equation (10)
phenomenologically and do not deal with the microscopic origin of the hyperfine interaction.

Figure 15. (a) Local symmetry axes (– – –) of the atomic sites in a tetrahedron. (b) The general
relation between the local symmetry axis (one of the 〈111〉 axes) and the spin-rotation plane, and the
definition of θ and φ. The minimum of θ , θ0, depends on the relative orientation of the symmetry
axis and the spin plane .
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We calculate the NMR spectra by assuming a homogeneous distribution of the spin
directions. As the simplest case, we assume that the helical axis and plane are the same
for all of the fcc sublattices. To calculate the lineshape, it is necessary to know the relation
between θ and the angle of the spin in the rotation plane, φ (measured from a certain direction
in the plane). The general relation between the spin direction and the symmetry axis (one
of the 〈111〉 ones) is schematically shown in figure 15(b), where θ is distributed between the
minimum angle θ0 and 90◦, and θ0 depends on the relative orientation of the spin-rotation plane
and the local symmetry axis, resulting in different spectral widths and singular points. For a
homogeneous distribution of φ, the lineshape is given by I (ν) ∝ (dν(φ)/dφ)−1. In figure 16
we show typical examples of the spectra thus calculated for the spin rotations in typical highly
symmetric planes of the cubic lattice, {100}, {110} and {111}. The corresponding angle θ is
also shown at the top of the figure. It should be noted that, in some cases, the relation between
θ and φ is not unique, since there are four kinds of local symmetry axis. The sketches on the
right-hand side in figure 16 display the relations between the spin-rotation planes (ellipsoids)
and the local symmetry axes (broken lines).

Figure 16. Calculated NMR spectra assuming homogeneous and single-axial helimagnetic
modulation with the spin rotation in {100}, {110} and {111} planes. The sketches on the right-hand
side show the relative orientations of the spin-rotation planes (ellipsoids) and the local symmetry
axes (– – –). Open and hatched ellipsoids represent different types (see the text).

For the {100}-plane rotation, we have cos θ = (sin φ + cosφ)/
√

3, where φ is measured
from the [001] axis. The spectrum has two peaks, at ν0 − 1

2ν1 and ν0 + 1
2ν1, with equal intensity.

For the {110}-plane rotation, there are two kinds of local 〈111〉 axis with respect to the (110)
plane: (i) 〈111〉 axes within the (110) plane, i.e. [1̄11] and [11̄1], and (ii) 〈111〉 axes not included
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in the (110) plane, i.e. [111] and [1̄1̄1]. For (i) and (ii), we have cos θ = (
√

2 sin φ+cosφ)/
√

3
and cos θ = cosφ/

√
3, respectively, with φ measured from the [001] axis. The lineshape is

given by the superposition of two different doublets with different splittings. Since one of the
singular points is the same for both doublets, a spectrum with three maxima at ν0 − 1

2ν1, ν0

and ν0 + 1
2ν1 with different intensities is obtained.

For the {111}-plane rotation, there are two kinds of site with (i) cos θ = 0 ([111]) and
(ii) cos θ = 2

√
2 cosφ/3 ([1̄11], [11̄1] and [1̄1̄1]), where φ is measured from the [121] axis,

with the population ratio 1:3. The spectrum consists of a delta function at ν0 − 1
2ν1 for case (i)

and a doublet with maxima at ν0 − 1
2ν1 and ν0 + 5

6ν1 for case (ii), resulting in a double-peak
structure with the peaks having different intensities.

Assuming the hyperfine mechanism to be common to YMn2 and Y(Tb)Mn2, qualitative
comparison between the experimentalT2-corrected spectra (figure 9) and the calculated profiles
(figure 16) indicates that spins rotate in the {100} and {111} planes in YMn2 and Y(Tb)Mn2,
respectively. The disagreement in fine structure is insignificant since the above calculations
were simplified in various steps. The parameters are estimated as ν0 = 128 and 130 MHz for
YMn2 and Y(Tb)Mn2, respectively, and ν1 = 18 MHz for both. On the other hand, the neutron
diffraction intensity analysis is not so effective for discerning the spin-rotation plane (except
in specific cases) because the angle factor is more or less averaged out in the helimagnetic
states. We calculated the magnetic reflection intensities assuming only (100)- and (111)-plane
spin rotations and found that the accordance between the calculated and experimental results
is satisfactory for both YMn2 and Y(Tb)Mn2.

In fact, however, there seems to be quantitative disagreement as regards the spectrum
analysis for Y(Tb)Mn2. As discussed above, we expect a 1:3 population ratio for the fixed-
θ (θ = 90◦) component and the distributed-θ doublet. In contrast to this, an analysis
of the integrated intensity favours 1:1. In figure 9(b), the Gaussian-convoluted spectrum
taking into account the inhomogeneous width (the full width of 5.5 MHz) is shown by
broken curves for each part and by the solid curve for the total, assuming the 1:1 population
ratio. This inconsistency may be resolved by assuming a double-axial helical modulation as
discussed below.

4.3. Possibility of double-axial states

Although the origin of the tetragonal distortion observed belowTN is not explicit, it is reasonable
to at least expect it to be related to the magnetic symmetry. In section 4.2, we showed that
the {100}-plane spin rotation is consistent with the NMR spectrum of YMn2. For the simple
proper screw structure, however, the best fit to neutron diffraction intensities is obtained for
spin rotation in the (100) plane, not in the (001) plane. It is difficult to correlate this model
with the distortion along the [001] direction. In this section, we try to find the spin structures
that are consistent with this crystal symmetry. Our basic assumptions are the following:

(i) We believe that the tetragonal distortion originates primarily from the partial release of
the frustration. That is, we restrict our models to ones with antiparallel spin arrangements
in the [110] and [11̄0] chains, but assume rather arbitrary coupling between (001) planes.

(ii) Even if the primary origin of the crystal distortion is the reduction of the magnetic
dimensionality, the final tetragonal symmetry should be of great significance and suggests
that the directions of spins should also show tetragonal symmetry.

In addition, the common lattice symmetry of YMn2 and Y(Tb)Mn2—in spite of the different
modulation directions—suggests a local nature of the lattice distortion.
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The basic idea is to recognize YMn2 as a weakly coupled assembly of one-dimensional
antiferromagnetic spin chains, and the aim is to find the magnetic structures which satisfy the
above condition and explain the experimental results from the neutron diffraction and NMR
investigations. Although Vokhnyanin et al [5] approached this problem from a different point
of view, their model does not satisfy the above conditions; the elemental unit in the model (see
figure 3 in [5]) is coupled antiparallel along [101] and [101̄] and decoupled along [010], and its
local symmetry is lower than tetragonal. Therefore we will not consider their model further.

We start from local symmetry consideration. The tetragonal symmetry implies the
presence of two independent and equivalent �q-vectors of {200}, i.e. �q1 = [200] and �q2 = [020].
Thus the relation (9) can be replaced by the double-�q state described by

�si = �m1 exp(−i�q1 · �ri) + �m2 exp(−i�q2 · �ri) (i = 1, 2, 3, 4). (11)

It is now enough to select appropriate �m1 and �m2 to determine the mutual spin directions among
the four sublattices. Within condition (2), �m1 and �m2 should be mutually orthogonal vectors.
The antiparallel coupling in the [110] and [11̄0] chains is described by

�s1 = −�s4 and �s2 = −�s3 (12)

for the elemental unit. Typical examples of double-�q states which satisfy (1), (2) and (12) are
shown in figure 17 together with the corresponding single-�q states. As seen in the figure, the
double-�q states (c) and (d) have π/2 rotational symmetry on the projected c-planes. Although
the frustration is partially released in the tetragonal symmetry, these spin structures are still
degenerate in energy. Therefore a secondary and minor interaction other than the simple
spin–spin interaction should determine the spin direction.

Figure 17. Examples of local spin configurations in the unit tetrahedron (•: z = 0; ◦: z = 1
4 ).

The c-axis is perpendicular to the surface. (a) and (b) are single-�q states, and (c) and (d) are
double-�q states with local tetragonal symmetry.

In actual helimagnetic structures, the double �q implies that the [110] and [11̄0] spin chains
have different helical axes, i.e. different �u and �v. The double-axial model considered for YMn2

is shown schematically in figure 18, where the elemental unit is given by figure 17(c) and spins
rotate in the (100) and (010) planes in the [110] and [11̄0] chains, respectively. This is obtained
by modifying the model proposed by Ballou et al [3] by changing the spin-rotation plane of the
[11̄0] chain from (100) to (010). For Y(Tb)Mn2 we modify this structure by tilting the spin-
rotation planes away from {100} planes (and locking the phase of the spins in the [11̄0] chains):
(111) or (111̄) for the [110] chains and (11̄1) or (11̄1̄) for the [11̄0] chains (see figure 19(b)).
The stability of these structures will be discussed in the next section.

How can we discriminate experimentally between these single- and double-axial
structures? NMR as a local probe is effective in some cases. Let us discuss Y(Tb)Mn2 first.



Helimagnetic structure of YMn2 495

Figure 18. The schematic representation of the double-axial helimagnetic structure considered for
YMn2. Spins rotate helically in (100) and (010) planes in [110] and [11̄0] spin chains, respectively.

It is easily found that the NMR spectra are different for the single- and double-axial states.
Figure 19 shows simplified sketches of the single- and double-axial states, where ellipsoids
represent the {111} spin-rotation planes and broken lines the 〈111〉 local symmetry axes. As
discussed in section 4.2, there are two different types of site as regards the orientation between
the local symmetry axis and the spin-rotation plane. One is (i) the case where the symmetry
axis is always perpendicular to the spin-rotation plane (hatched ellipsoids) and the other is (ii)
the case with the spin direction θ distributed over the range 19.5–90◦ (open ellipsoids). As
seen in figure 19(b), in both the [110] and [11̄0] chains half of the Mn spins have θ = 90◦ in

Figure 19. Simplified sketches of the single-axial (a) and double-axial structures (b) considered
for Y(Tb)Mn2 (the {111}-plane spin rotation). Ellipsoids and broken lines represent the {111}
spin-rotation planes and the 〈111〉 local symmetry axes, respectively. Open and hatched ellipsoids
represent different types, where the angle θ is fixed at 90◦ and distributed in the range 19.5–90◦,
respectively. In the single-axial structure, where all spin-rotation planes are the same (111) plane,
the population ratio of the fixed-θ and distributed-θ components is 3:1. On the other hand, the
double-axial states have different spin-rotation planes for the [110] and [11̄0] chains, resulting in
a 1:1 ratio of the fixed-θ and distributed-θ components.
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the double-axial structure. Therefore, the population ratio of the cases (i) and (ii) is 1:1 for the
double-axial state, which is different from 1:3 for the single-axial state. As was pointed out
in section 4.2, the intensity analysis of the experimental spectrum (figure 9(b)) favours 1:1,
suggesting that the double-axial state is realized in Y(Tb)Mn2.

On the other hand, for pure YMn2, the single- and double-axial states of the {100} spin
rotation give the same NMR spectrum, because the relative orientation of the {100} planes and
the 〈111〉 local symmetry axes is unique and independent of the dimension. In addition, the
neutron diffraction patterns for the double-axial state and the corresponding single-axial one
(including the helical modulation) are the same if the latter state is composed of multi-domains
with equal populations. Therefore, we cannot discriminate between these states.

4.4. The origin of the spin reorientation and the helical modulation

First, note that the single-ion anisotropy of the Tb moments does not directly contribute to the
spin reorientation because they behave paramagnetically down to low temperature. Generally
the direction of the spins is determined by the exchange interaction and the anisotropy (which,
here, includes not only single-ion anisotropy but also anisotropic or higher-order exchange
interaction). The former favours simpler or more highly symmetric structures and the latter
makes the spins orient in the easy-magnetization direction. Some experimental results indicate
strong magnetocrystalline anisotropy in YMn2, probably via the spin–orbit coupling. The
Knight-shift anisotropy in the paramagnetic state is large. In the ordered state, the anisotropy
in the internal field plays a principal role in determining the NMR spectra and the relaxation
times (as will be discussed in section 4.5). Ballou et al [8] suggested that the easy plane
of the magnetization for each Mn atom is perpendicular to the local symmetry axis from
referring to the spin-reorientation process observed in NdMn2. Taking into account these
results, we assume that the Mn spins tend to orient perpendicular to the local symmetry
axes. In addition to this easy-plane anisotropy, we assume that, as already emphasized, the
antiparallel configuration is preferred in the [110] and [11̄0] chains. In this case, the structure of
Y(Tb)Mn2 is understandable, where spins—as many as possible—orient perpendicular to the
local symmetry axis while conserving the antiparallel coupling in the [110] and [11̄0] chains. It
is clear that the double-axial structure is preferable to the single-axial one from considering the
anisotropy energy. In fact, Ballou et al [8] have already discussed a similar double-axial state
as a possible structure for pure YMn2. On the other hand, the double-axial structure suggested
here for YMn2 has tetragonal symmetry not only locally but also over a long range. All the
spin-rotation planes are equivalent with respect to their local symmetry axes. The helical
modulation is isotropic, in contrast to the partly locked collinear spin chains in Y(Tb)Mn2.
This is the so-called proper screw structure, in which the helical axes are perpendicular to
the spin-rotation planes. Thus the spin reorientation caused by the substitution of a small
amount of Tb is interpreted as the symmetry lowering (phase transition) from the coherent
state to an asymmetric but locally preferable configuration as a result of the loss of the delicate
balance between the exchange interaction and the anisotropy. In actual substances, it is likely
that these two states coexist to some extent due to the presence of slight inhomogeneity or
impurity. This may explain the much more extended helical modulation in the b-direction [4]
and some sample dependences reported previously.

The origin of the long-period helical modulation has not been discussed explicitly.
Terao [30] discussed the magnetic structure of this lattice taking into account up to third-
neighbour interactions and claimed that no helical modulation appears. One hint, from the
discussion on the fcc lattice, which is another three-dimensional fully frustrated system, is
suggestive. Giebultowicz et al [31] argued that an incommensurate helical modulation is
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induced by the (artificial) tetragonal distortion in the type-I fcc antiferromagnet. They took into
account nearest-neighbour and next-nearest-neighbour interactions, J1 and J2, and assumed
the separation of J1 into J⊥ and J‖ as a result of the tetragonal distortion, where ⊥ and ‖ indicate
components perpendicular and parallel to the c-axis, respectively. In this model, the tilt angle
of the spins, ψ , is given by cosψ = (J⊥ − J‖)/J2. Since the corner-sharing tetrahedral lattice
consists of four fcc sublattices, this model may be applied to YMn2. In the NSK structure,
interactions from up to fifth-neighbour spins cancel due to the antiferromagnetic coupling. The
effective J2 is the interaction with a sixth neighbour at a distance 9a/8, which may be small
with respect to J⊥ − J‖, resulting in a long-period modulation. If this is the case, one expects
the helix period to depend on the distortion. We actually observed a correlation between the
temperature-dependent distortion and the period measured for YMn2 [18, 33] although Ritter
et al [32] claimed to find no correlation in a comparison of some pseudobinary systems. In this
scenario, the long-period modulation originates from the small distortion induced to release
the frustration in the corner-sharing tetrahedral lattice.

4.5. Angle dependence of the relaxation time

In the magnetically ordered states of YMn2 and Y(Tb)Mn2, the spin-echo decay time T2

depends strongly on the frequency. This feature being common to YMn2 and Y(Tb)Mn2,
in spite of the difference in lineshape, suggests that T2 depends on the angle between the
internal fields and the crystallographic axis, i.e. θ . One of the characteristic features is that the
shortest T2 is at θ � 45◦. This rules out the possibility of the spin-diffusion mechanism being
the origin of the frequency-dependent T2, which is frequently present for inhomogeneously
broadened lines.

Generally, the relaxation phenomena are described by the Fourier transform of the
fluctuating local field δHloc(t). The characteristic times T1 and T ′

2 for the T1- and T2-processes,
respectively, are given by

1

T1
= γ 2

2

∫ ∞

−∞
〈{δH+(t), δH−(0)}〉 exp(iωt) dt

1

T ′
2

= γ 2

2

∫ ∞

−∞
〈{δHz(t), δHz(0)}〉 dt

(13)

where ω is the resonance frequency, δH± = δHx ± iδHy and {A,B} = 1
2 (AB + BA) [24].

〈 〉 means the statistical average. Thus T ′
2 is determined by fluctuations of local fields along

the quantization (z-) axis, while T1 is described by those perpendicular to the z-axis. The
lack of distinct angle dependence of T1 indicates clearly that the characteristic features of T2

are dominated by the T2-process. The most basic mechanism of the T2-process is the direct
dipolar coupling between like nuclei. This interaction is weak, particularly in the magnetically
ordered state with an inhomogeneously broadened spectrum. The indirect interaction via
conduction electrons—the so-called Ruderman–Kittel interaction [25]—is expected to be angle
independent. One well-known relaxation mechanism in the magnetically ordered state is the
indirect interaction via electron spin waves—the Suhl–Nakamura interaction [26,27]. If there
is an anisotropy in the spin-wave excitations, this interaction may be angle dependent. In this
case, however, we expect a more distinct angle dependence in the T1-process and the largest
T2 at the magic angle (3 cos2 θ − 1 = 0). Since the Suhl–Nakamura interaction depends on
the quantum number of the transitions [28], a large quadrupolar interaction may result in an
angle-dependent T2, but not in the present case.

Here, we introduce a simple phenomenological model just for qualitative discussion. We
attribute the relaxation to time-dependent local fields associated with the dynamic motion of
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electron spins. Since moment directions distribute spatially with respect to the crystallographic
axis, the directional fluctuations result in an angle dependence of the time-dependent local
field. Here the time-averaged local field is given by Hloc = ν/γ with ν as in equation (10).
If Hloc changes its magnitude to Hloc + δH

‖
loc(t) when the angle θ fluctuates to θ + δθ(t), the

longitudinal fluctuations δH
‖
loc(t) are given by

δH
‖
loc(t) = dHloc

dθ
δθ(t). (14)

Referring to the relaxation rate in equation (13), which is proportional to the square of the
field, we have

1

T ′
2

∝ δH
‖
loc(t)

2 ∝ ν2
1 sin2 2θ (15)

where we have assumed that δθ(t) does not depend on θ . In this case 1/T ′
2 has a maximum

at θ = 45◦ and minima at θ = 0 and 90◦. A similar argument for T2 has already been applied
to some materials by Abelyashev et al [29].

On the other hand, transverse fluctuations of the local field are produced by angular motion
both in θ and φ, where φ is the angle in the plane perpendicular to the local symmetry axis.
In the case of the easy-plane anisotropy in the plane perpendicular to the local symmetry
axis, we expect fluctuations in φ to dominate over the transverse fluctuations, which may be
approximated as δH⊥

loc(t) ∼ Hloc sin θ δφ(t). Then, we have

1/T1 ∝ δH⊥
loc(t)

2 ∝ [
ν0 + 1

2ν1(3 cos2 θ − 1)
]2

sin2 θ

which decreases monotonically against frequency (∝ 3 cos2 θ − 1); this is consistent with the
experimental result (figure 11). Taking into account equation (4), the calculated frequency
dependence of 1/T2, including the asymmetry against frequency, agrees well with the exp-
erimental result (figure 8). Hence the phenomenological model successfully explains the angle
dependences of the relaxation times.

Finally, we comment on the magnitude of the hyperfine coupling constant. In the
analysis in section 4.2, the angle-independent part of the internal field was estimated to be
Hiso = ν0/γ � 12.3 T. With the ordered moment 2.7 µB, the isotropic hyperfine coupling
constant is calculated as |AAF| = 4.6 Tµ−1

B . On the other hand, the isotropic coupling
constant in the paramagnetic state is AP = −22.2 Tµ−1

B . The large difference in magnitude
is explained reasonably well by taking into account the transferred fields from neighbouring
atoms. In the first approximation, the hyperfine coupling constant is decomposed into an intra-
atomic (on-site) field and a transferred field from nearest-neighbour atoms. Assuming that the
transferred field is proportional to the vector sum of nearest-neighbour magnetic moments,
the relations |AP| = |Aon + 6Atr| = 22.2 T µ−1

B and |AAF| = |Aon − 2Atr| = 4.6 T µ−1
B

hold for the paramagnetic and magnetically ordered state, respectively, where Aon is the field
produced by intra-atomic 3d electrons and Atr the transferred field produced by each nearest-
neighbour atom. This is based on the fact that four of the six nearest-neighbour magnetic
moments cancel in the antiferromagnetic spin configuration. Solving these equations, we have
|Aon| = 9.0 T µ−1

B and |Atr| = 2.2 T µ−1
B , both of which are reasonable for metallic Mn

compounds.

5. Concluding remarks

To consider the magnetic structure of YMn2, we carried out both neutron diffraction and NMR
experiments. It should be emphasized that local probes such as NMR give useful information
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for determining the spin direction and enable us to discriminate between magnetic structures
which are equivalent in the reciprocal space. The main experimental results and their analyses
are summarized as follows:

(i) The paramagnetic Knight shift shows an appreciable anisotropy, suggesting anisotropic
local susceptibility. All of the NMR results for the ordered state also indicate a strong
local magnetocrystalline anisotropy, suggesting non-negligible spin–orbit coupling.

(ii) We found unexpectedly a large frequency variation of the spin-echo decay time T2 in the
helimagnetic state; this was explained in terms of a phenomenological model taking into
consideration the dynamic motion of electron spins in the locally anisotropic magnetic
system. As a result, the inconsistency among the previous NMR results was completely
removed.

(iii) The T2-corrected NMR spectrum for the helimagnetic state was consistently explained
assuming an anisotropy in the local field and a homogeneous distribution of the spin
direction.

(iv) The substitution of a small amount of Tb for Y induces a spin reorientation from the
propagation vector �Q = [τ01] (τ = 0.018) with spins rotating in the {100} plane
to �Q = [ττ1] (τ = 0.015) with {111}-plane rotation, but leaves the tetragonal lattice
distortion as it is.

We recognized the magnetic ordering of YMn2 as the partial release of the geometrical
frustration of the nearest-neighbour antiferromagnetic interaction in the corner-sharing tetra-
hedral lattice, and treated the ordered state as weakly coupled one-dimensional antiferro-
magnetic spin chains. In the ordered state with the tetragonal lattice symmetry, the
frustration still remains, resulting in degeneracy of the spin direction. Therefore secondary
and minor interactions should determine the actual structure. We suggested here that the
magnetocrystalline anisotropy, probably via the spin–orbit coupling, plays an important role
in selecting the spin direction and discussed the possibility of double-axial helimagnetic
structures. In particular, the tetragonal lattice symmetry belowTN is rather naturally understood
if we assume a double-axial state, which may be classified as a kind of ordered state of ‘orbitals’
in a very broad sense. The spin reorientation induced by the Tb substitution was interpreted
as a symmetry lowering from a coherent proper screw state with high magnetic symmetry to
an asymmetric but locally preferable configuration in the easy-plane anisotropy perpendicular
to the local symmetry axis. The long-period moderation was ascribed to the lattice distortion
induced to release the frustration.

The strong frequency dependence of T2 found in the present study indicates that the T2-
correction of the NMR spectrum is crucially important in discussing the magnetic structure
not only for YMn2 but also for general anisotropic magnetic systems.
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